Extensions 1→N→G→Q→1 with N=C3 and Q=C22.33C24

Direct product G=N×Q with N=C3 and Q=C22.33C24
dρLabelID
C3×C22.33C2496C3xC2^2.33C2^4192,1428

Semidirect products G=N:Q with N=C3 and Q=C22.33C24
extensionφ:Q→Aut NdρLabelID
C31(C22.33C24) = C6.62- 1+4φ: C22.33C24/C2×C4⋊C4C2 ⊆ Aut C396C3:1(C2^2.33C2^4)192,1074
C32(C22.33C24) = C42.118D6φ: C22.33C24/C4×D4C2 ⊆ Aut C396C3:2(C2^2.33C2^4)192,1123
C33(C22.33C24) = C6.702- 1+4φ: C22.33C24/C4⋊D4C2 ⊆ Aut C396C3:3(C2^2.33C2^4)192,1161
C34(C22.33C24) = C6.202- 1+4φ: C22.33C24/C22⋊Q8C2 ⊆ Aut C396C3:4(C2^2.33C2^4)192,1197
C35(C22.33C24) = C6.782- 1+4φ: C22.33C24/C22⋊Q8C2 ⊆ Aut C396C3:5(C2^2.33C2^4)192,1204
C36(C22.33C24) = C6.632+ 1+4φ: C22.33C24/C22.D4C2 ⊆ Aut C396C3:6(C2^2.33C2^4)192,1219
C37(C22.33C24) = C6.852- 1+4φ: C22.33C24/C22.D4C2 ⊆ Aut C396C3:7(C2^2.33C2^4)192,1224
C38(C22.33C24) = C42.150D6φ: C22.33C24/C42.C2C2 ⊆ Aut C396C3:8(C2^2.33C2^4)192,1251
C39(C22.33C24) = C42.161D6φ: C22.33C24/C422C2C2 ⊆ Aut C396C3:9(C2^2.33C2^4)192,1266


׿
×
𝔽